返回主站 | 设为首页 | 加入收藏      
   
 
  首页 关于我们 产品展示 方案设计 技术分享 行业资讯 联系我们  
 
电源管理IC
同步DC-DC升压IC
异步DC-DC升压IC
锂电充电管理IC
5V USB输入两节/三节锂电池升压型充电管理IC
移动电源双向快充IC
电池管理系统(BMS监控IC)
降压型锂电充电管理IC
升降压型锂电充电管理芯片
内置快充协议的锂电充电管理IC
内置快充协议车载充电器SOC
内置快充协议(DFP)的同步DC-DC降压控制器IC
快充协议IC
恒压充电电压可调开关型充电管理芯片
带OVP过压保护功能的单节线性锂电充电IC
磷酸铁锂电池充电管理IC
铅酸电池充电管理IC
充满截止电压可调磷酸铁锂/锂电充电管理芯片
高输入电压3A大电流锂电充电管理IC
超级电容充电IC
DC-DC升降压IC
过压过流OVP保护IC
DC-DC降压IC
高输入电压DC-DC降压IC
USB限流开关芯片
高耐压LDO
功放IC
马达驱动IC/步进电机控制芯片
数模(DAC)/模数(ADC)转换芯片
智能处理器
音量控制IC
模拟开关IC
电容式触摸感应IC
RGB LED呼吸趣味灯驱动IC
音频CODEC IC
方案设计
电压电平转换器IC
运算放大器
I/O扩展器IC
 
名称:
种类:
类别:

业务洽谈:

联系人:张顺平 
手机:17727550196(微信同号) 
QQ:3003262363
EMAIL:zsp2018@szczkjgs.com

联系人:鄢先辉 
手机:17727552449 (微信同号)
QQ:2850985542
EMAIL:yanxianhui@szczkjgs.com

负责人联络方式:
手机:13713728695(微信同号) 
QQ:3003207580 
EMAIL:panbo@szczkjgs.com
联系人:潘波

 
当前位置:首页 -> 技术分享
如何将RF与数模电路设计在同一PCB上?
文章来源: 更新时间:2013/1/20 11:02:00

手持无线通信设备和遥控设备的普及推动着对模拟、数字和RF混合设计需求的显著增长。手持设备、基站、遥控装置、蓝牙设备、计算机无线通信功能、众多消费电器以及军事/航空航天系统现需要采用RF技术。 

数年来,RF设计需要专业设计人员使用专门的设计和分析工具来完成。典型情况下,PCB的RF部分由RF专业人员在独立环境下设计好后,再与混合技术PCB的其余部分合并在一起的。这一过程的效率很低,而且为了与混合技术整合在一起,常常需要反复设计,还需要用到多个互不相关的数据库。 

在过去,设计功能在两个设计环境进行和重复,并通过一个非智能的ASCII接口连接(图1(a))。两个环境中的PCB系统设计和RF专门设计系统有它们自己的库、RF设计数据库和设计存档。这就要求两个环境中的设计数据(原理图和版图)和库通过一个繁琐的ASCII接口进行管理和同步。 

在这一旧的方法下,RF设计师孤立于PCB系统设计中的其他部分进行RF电路的开发。然后该RF电路再利用ASCII文件翻译到总体PCB设计中,从而在主PCB上创建出原理图和物理实现。如果RF电路存在问题,那么设计必须在独立的RF解决方案中修正,然后再重新翻译进主PCB。 

RF模拟器只模拟了理想的射频电路。在实际混合系统实现中有许多零碎的地层、地过空和相邻的RF电路,这使得分析变得非常的困难,而且谁都知道这些附加的形状将会对RF电路运作产生长久的影响。 

这一旧方法多年来已成功地用于混合信号电路板设计,但随着产品中RF电路含量的增加,两个独立设计系统带来的问题已开始影响设计师的生产力、产品上市时间和产品的质量。 

为了解决这些问题,Mentor Graphics公司已经开发出一种动态链接技术,它可以将PCB原理图和版图工具与RF设计和模拟工具集成在一起,从而产生了一种新的解决方案,它可以克服传统的射频设计的缺点。 

RF感知(RF aware)PCB设计 

为保持PCB和RF设计间的设计意图,RF设计工具必须理解PCB布局中面向层(layer-oriented)的结构,而PCB系统也必须理解RF设计环境中使用的参数化平面微波元件。 

另一个关键问题是,PCB系统将RF电路的版图构建成短路电路,这妨碍了对设计进行正确的设计规则检验(DRC)。对当今的复杂RF系统设计来说,功能上的RF感知DRC是设计方法学确保设计正确所必须的。 

所有这些都对保持设计意图有帮助。保持设计意图非常关键,因为它是实现在工具集间设计数据的多次往返而不丢失信息的基础。 

RF设计是个反复的过程,需要采取很多步骤对设计进行调整和优化。过去,在真实的PCB设计背景下,进行RF设计非常困难。当当在PCB上实现经过优化的RF模块时,仍无法保证它仍工作在最佳状态。作为一种验证,需要对PCB实现进行电磁场分析(EM)。 

如何将RF与数模电路设计在同一PCB上?

这个设计流程存在好几个问题。首先,电路被当作简单的金属层几何图形进行模拟,所以RF工具无法对金属层进行修改,无法把经优化的结果回送至PCB设计后仍拥有一个良好的RF电路。其次,EM方案很耗时。 

在新流程中,因为PCB工具和RF工具对设计意图有共识,所以电路可在工具集间传来送去而不会丢失设计意图。这意味着电路模拟(速度很快)和EM分析(当需要时)可重复进行,且可对每次电路修改的结果进行比对。这一切是在真实PCB环境中完成的,包含了地平面、RF电路的版图、导线、过孔及其它元件。

RF PCB设计瓶颈 

RF PCB设计瓶颈主要有以下几个。第一,由于PCB板上的每个RF模块可能已经被一个独立的RF设计小组设计出来,以及每个模块可以独立进行升级、演变和重利用,因此将整个电路作为一个整体来管理就变得至关重要,但在任何时候仍然把这些模块作为单独的电路元件进行存取。为了解决这个问题,原理图和版图工具必须扩展,以支持分层分组电路。通过这一方法,即使一个RF电路已经在PCB上布好,它仍然可以作为一个RF电路与其它模块放在一起,并可以连接到适当的RF设计小组进行分析。 

如何将RF与数模电路设计在同一PCB上?

下一个障碍是如何设计地平面。在传统的设计流程中,采用RF金属来作为一个黑箱金属块,与地的间隔是手工完成的,因为过空要经过每一个地层。当RF电路更新后(这是一个频繁的操作),裁掉的部分就必须手动修改以对应新的电路。对某些设计来说,仅这一编辑过程可能就要花几周的时间。 

新的综合设计流程 

RF设计工具和PCB设计工具之间的综合一直以ASCII IFF格式文件的双向转换为基础。该格式虽能处理部分设计数据,但还远远没有实现无缝的反复综合。缺少库同步是致命的一个原因。 

这种设计需求催生出了一个基于网络的工具间的通信,它在RF设计和系统级PCB设计间提供一个动态双向链接(图1(b))。为支持并行工程处理,多个PCB工程师可同时使用同一个设计数据库,每人都能链接一个或多个模拟部分。现在,可以采用RF设计工具来设计RF模块,并在恰当时候将其综合为系统级原理图和PCB的一部分,而不再像过去那样仅是个难以琢磨的黑匣子电路。在此阶段,可在任一环境中升级电路并模拟其效果。 

将每个RF电路看作一组对象,以帮助维护可追溯性、版本管理和设计问题。因为设计意图得以保全,所以可实施任意多次的设计反复,而没有时间成本。此外,因为可以在真实系统级PCB环境中对RF模块进行模拟,所以应该更详尽地对其功能进行验证以帮助缩短设计周期。



 
 
 
    相关产品  
NRF24L01/Si24R1(2.4G发射接收IC)
 
M12269 HT366 ACM8629 HT338 
深圳市永阜康科技有限公司 粤ICP备17113496号  服务热线:0755-82863877 手机:13242913995